Gold, L.S., Bernstein, L., Magaw, R., and Slone, T.H. Interspecies extrapolation in carcinogenesis: Prediction between rats and mice. Environmental Health Perspectives 81: 211-219 (1989).
Interspecies extrapolation in carcinogenesis is studied by evaluating prediction from rats to mice and from mice to rats. The Carcinogenic Potency Database, which includes 3500 cancer tests conducted in rats or mice on 955 compounds, is used. About half of the chemicals tested for carcinogenicity are positive in at least one test, and this proportion is similar when rats and mice are considered separately. For 392 chemicals tested in both species, 76% of the rat carcinogens are positive in the mouse, and 70% of mouse carcinogens are positive in the rat. When compounds composed solely of chlorine, carbon, hydrogen and optionally oxygen are excluded from the analysis, 75% of mouse carcinogens are positive in the rat. Overall concordance (the percentage positive in both species plus the percentage negative in both) is 76%. Three factors that affect prediction between rats and mice are discussed: chemical class, mutagenicity in the Salmonella assay, and the dose level at which a chemical is toxic. Prediction is more accurate for mutagens than nonmutagens, and for substances that are toxic at low (vs. only at high) doses. Species differences are not the result of failure in the bioassay to attain the maximum tolerated dose in the negative species, or of more frequent testing in the positive species. An analysis of the predictive value of positivity for the 10 most common target sites, indicates that most sites are good predictors of carcinogenicity at some site in the other species; the poorest predictors among these common sites are the rat urinary bladder and the mouse liver.
Return to the Carcinogenic Potency Project Home Page:
Last updated: October 29, 1998